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The motion of a triple junction is investigated. We consider only the two-dimensional
case and assume that initially the fluid is in the form of three inviscid wedges. A
similarity solution is determined which accounts for a balance of force at the triple
junction. This similarity solution is computed numerically using boundary integral
methods. Results are presented for different initial wedge angles and surface tension
ratios. In particular the location of the triple junction and the resulting capillary
waves along the interfaces are discussed.

1. Introduction
Many interesting and important physical processes involve the spreading of one

liquid over another. There are applications to many fields. Specific examples are liquid
waste spills on bodies of water (e.g. oil spreading on the sea or chemical waste spills
in ponds) and aerosol delivery of bronchial medicated mists. Although one can think
of several relevant but different situations to study, it is clear that the relationship
between the surface tensions of the liquid interfaces is one of the dominant factors in
determining how the liquids spread.

Consider what occurs when a liquid drop is placed in contact with the interface of
a second liquid. After the initial instant of contact, a three-phase (gas/liquid/liquid)
point occurs in two dimensions (this is a three-phase line in three dimensions) if the
liquids are immiscible. We will refer to this three-phase point as the triple junction.
The surface tension forces at this triple junction influence how the drop spreads along
the interface of the base liquid. In particular, for low viscosity fluids, the initial motion
might be expected to be governed primarily by inertial and surface tension forces.
In addition, near the triple junction an initial distribution of the fluids into three
wedges may be a reasonable local approximation. This initial geometry is determined
by the drop placement process but, after the triple junction is formed, the local
interface shape will adjust so as to properly balance all local forces (see the review
article Eggers (1997) for the related problem of the rupture of a fluid thread). Now
consider a situation where surfactant is deposited onto the interface of a droplet
resting in equilibrium on the interface of a second liquid. As in the previous problem,
the local geometry at the triple junction (in two dimensions) can be described by
the intersection of three fluid wedges. If the adsorption rate of surfactant onto the
interface is large (e.g. there is no diffusion transport limitation), the surface tension
will change more rapidly than the deformation of the interfaces. The result will be
an imbalance of force at the triple junction resulting in the motion of the interfaces.
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Again, an inviscid solution might be expected to describe the early dynamics of the
interfaces, if the surface forces dominate the viscous forces (see Daniel, Chaudhury
& Chen (2001) for the related problem of the motion of droplets by phase change on
a gradient surface). In the two problems described above, the local dynamics appears
to be related to the motion of three fluid wedges driven by a relation between the
forces at the triple junction. Although the full dynamics of the interfaces is much
more complicated than implied here, a study of this local canonical triple-junction
problem may give some insight into the spreading process.

A measure of the effect of the different surface tension forces is given by the
spreading coefficient. For a droplet of liquid in air placed on top of a base liquid,
positive spreading coefficient, S , means that the surface tension of the base liquid with
air, σla, is larger than the sum of the surface tension of the droplet with air, σda, and
the surface tension between the liquid and the droplet, σld, i.e. S = σla− σla− σda > 0.
Hence the droplet will completely wet the second liquid, i.e. without any additional
assumptions it will completely cover the interface of the base liquid. Such a situation
has been investigated by DiPietro, Huh & Cox (1978), DiPietro & Cox (1980) and
Foda & Cox (1980) who developed a theory for the spreading of a droplet in the
completely wetting case. Their model included the additional effect of a leading
precursor (a monolayer) film. The addition of the precursor film to the model allowed
them to obtain steady and similarity solutions. The positive spreading coefficient case
was also investigated analytically by Joanny (1987) and Brochard-Wyart, Debregeas
& de Gennes (1996) and experimentally by Fraaije & Cazabat (1989).

Less work has been done for negative spreading coefficients, S < 0. In this case an
equilibrium situation is possible without the additional assumption of a monolayer
precursor film. An example of such a situation is a water droplet on top of a pool of
carbon tetrachloride (or almost any organic liquid). Equilibrium solutions of droplets
resting on a liquid interface were computed by Pujado & Scriven (1972). Recently
a lubrication model was used by Wilson & Williams (1997) to study the two-liquid
coating problem in the negative spreading coefficient case when a zero net force
assumption is made at the triple junction of the three liquid interfaces for all time.
Also recently, Kriegsmann (1999) studied the motion of a droplet as it flows on top
of a liquid film on an inclined plane with a similar assumption.

Here the canonical situation discussed above where the liquids are initially in
the form of three wedges is considered. The zero net force condition is not initially
satisfied at the triple junction but it will be satisfied for time positive. This then results
in the motion of the interfaces and the triple junction. It will be shown that there is
a similarity solution of the problem and this solution will be determined numerically.
The solutions obtained are all time dependent. The zero net force conditions at the
triple junction can be satisfied for a range of values of the surface tensions since the
interfaces are allowed to deform. Hence the definition of a spreading coefficient loses
some of its meaning here since strictly speaking there is no coating liquid spreading
over a base liquid. It is therefore more appropriate to ask when the balance of force
can be satisfied at the contact point. The answer is clearly that the balance of force
can always be satisfied as long as the sum of any two of the surface tensions is larger
than the third surface tension.

The basic scaling and the solution technique used here parallel the work of Keller
& Miksis (1983) who studied the motion of a single inviscid wedge of fluid. Unlike
the problem considered here, the initial vertex of their wedge was confined to remain
along one of the coordinate axis, whereas here the location of the triple junction in the
plane is part of the solution of the problem. In another related work Keller, Milewski
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Figure 1. Initial configuration at t = 0 and a dynamic triple junction for t > 0.

& Vanden-Broeck (2000) considered the corresponding merging of two fluid wedges
using a similarity solution. Also note that the present problem can be extended to
Stokes flows by following the formulation in Miksis & Vanden-Broeck (1999).

2. Formulation
Suppose that initially, three inviscid liquid wedges meet at a common point, the

triple junction. We wish to study the dynamics of these wedges given that for positive
time, the interfaces must satisfy the boundary conditions of zero net force at the triple
junction. Although this is an equilibrium condition, we will assume that it holds for
all time.

Initially the three different fluids are in the form of three wedges, see figure 1.
Denote these fluid regions by Ω1, Ω2 and Ω3. Let the three interfaces be denoted
by Ia, Ib, and Ic. Suppose that Ia and Ib bounds Ω1, that Ia and Ic bound Ω2 and
that Ib and Ic bound Ω3. We will assume potential flow in each region. Hence letting
Φi, i = 1, 2, 3, be the velocity potential in each of the regions Ωi, we have

∇2Φi = 0 (2.1)

for (x, y) ∈ Ωi.
Each interface Ij is assumed to have a surface tension σj , where j = a, b, c, and

each fluid region Ωi is assumed to have a density ρi where i = 1, 2, 3. Hence using
Bernoulli’s theorem and the fact that the jump in normal stress across the interface
is equal to the mean curvature times the surface tension, we find that along interface
Ia which separates Ω1 and Ω2,

ρ2

∂Φ2

∂t
− ρ1

∂Φ1

∂t
+
ρ2

2
(∇Φ2)2 − ρ1

2
(∇Φ1)2 = σaκa, (2.2)

where κa is the mean curvature of interface Ia. Equations similar to (2.2) can also be
derived along Ib and Ic. In addition we also have the kinematic boundary condition
(i.e. the normal velocity of the fluid equals the normal velocity of the boundary) along
each interface. In order to complete the formulation of the problem we still need to
specify boundary conditions at the triple junction and at infinity.

The boundary conditions at the triple junction for t > 0 are given by a balance of
surface tension forces, i.e. forcing zero net force. Suppose that we let γi, i = 1, 2, 3,
represent the angles between the interfaces at the triple junction in region Ωi, see
figure 1. Then the balance of force conditions at the triple junction relate the angles γi



388 M. J. Miksis and J.-M. Vanden-Broeck

to the surface tension by the Neumann triangle, e.g. see Rowlinson & Widom (1989).
The Neumann triangle is simply a triangle with sides of lengths σj , j = a, b, c, and
internal angles π − γi, i = 1, 2, 3, where these angles are bounded by the same sides
as γi is in figure 1. As noted in the previous section, the Neumann triangle can only
exist (i.e. the forces can only balance) if the sum of the lengths of any two sides (σj)
is larger than the third. Hence, using the law of cosines on the Neumann triangle, the
zero net force condition implies

cos (γ1) =
σ2
c − σ2

b − σ2
a

2σaσb
, cos (γ2) =

σ2
b − σ2

c − σ2
a

2σaσc
, cos (γ3) =

σ2
a − σ2

b − σ2
c

2σcσb
. (2.3)

Note that although there are three conditions in (2.3), one is dependent on the other
two since the angles at the triple junction must add up to 2π, i.e. γ1 + γ2 + γ3 = 2π.
These conditions are assumed to hold for t > 0. They force the interface to change
from the initial data of a straight sided wedge to something evolving with non-straight
sides. To be specific about the initial data, we assume that initially Ia makes an angle
αa with the x-axis, that Ib makes an angle αb with the x-axis and that Ic lies along the
negative x-axis, see figure 1. Note that this implies that the initial triple junction is at
the origin and that these angles will be preserved far from the origin for all time (i.e.
these angles define boundary conditions at infinity).

We note that there is no natural length scale, therefore we can look for a similarity
solution. Following Keller & Miksis (1983), we introduce the similarity variables

ξ = x(ρ1/σat
2)1/3, η = y(ρ1/σat

2)1/3, Φi = (σ2
at/ρ

2
1)

1/3φi. (2.4)

Note that we scale all variables using σa and ρ1. Hence we need to introduce the
density ratios βi = ρi/ρ1, i = 2, 3, and the surface tension ratios Σj = σj/σa, where
j = b, c.

After applying (2.4) to the equations of motion and boundary conditions, we find
that the potential φi still satisfies Laplace’s equation in each region Ωi (now in the
(ξ, η) similarity plane). In addition equation (2.2) becomes

β2

{
1
3
φ2 − 2

3
(ξφ2

ξ + ηφ2
η)
}− { 1

3
φ1 − 2

3
(ξφ1

ξ + ηφ1
η)
}

+ 1
2

{
β2(∇φ2)2 − (∇φ1)2

}
= κa.

(2.5)

Here κa represents as before the mean curvature of Ia but now in the similarity plane.
We will still use Ωi, i = 1, 2, 3, to refer to each of the fluid regions and Ij , j = a, b, c,
to refer to each of the interfaces in the similarity plane.

Note that along each interface there are four unknowns giving a total of twelve
unknown functions. These are the parameterization of each interface, ξj(s), ηj(s),
j = a, b, c, where s is the arclength, and the six potential values, one on each side of
each interface. For example, along interface Ia there are unknown potentials φ1

a and
φ2
a on each side of the interface. There is no reason to assume that these potentials are

the same across the interface since, in potential flow, the tangential velocity on each
side of the interface does not have to be continuous. The only relation we assume
between each of these potential functions is that initially they are all zero, i.e. no flow,
so they are zero at infinity in each region for all time. Hence this is the boundary
condition to be used at |s| = ∞ along each interface. We define the arclength such
that s = 0 at the triple junction and assume that the arclength increases to positive
infinity along interfaces Ia and Ic but decreases to minus infinity along interface Ib.
This is just a minor technical point necessary for the parameterization.

Our plan is to solve for the twelve unknown functions along the three interfaces
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by reformulating the problem as a system of integro-differential equations. Note that
there are two sets of integral equations for each of the potentials on each surface
(six equations), the arclength condition on each interface (three equations) plus the
balance of normal force as in equation (2.5) (three equations). Hence the number of
equations is equal to the number of unknowns. Here the arclength condition means
that the square of the derivatives of η and ξ with respect to the arclength adds up to
one along each interface.

As an example of the resulting integral equations, suppose we consider the form of
the equation on the Ω1 side of interface Ia. In this case we find that

1
2
φ1
a(s) =

∫ ∞
0

{
φ1
a(ŝ)

∂g

∂n
(ξa(ŝ), ηa(ŝ); ξa(s), ηa(s))− g(ξa(ŝ), ηa(ŝ); ξa(s), ηa(s))

∂φ1
a

∂n
(ŝ)

}
dŝ

+

∫ 0

∞

{
φ1
b(ŝ)

∂g

∂n
(ξb(ŝ), ηb(ŝ); ξa(s), ηa(s))− g(ξb(ŝ), ηb(ŝ); ξa(s), ηa(s))

∂φ1
b

∂n
(ŝ)

}
dŝ,

(2.6)

where the free-space Green’s function g is given by

g(ξ, η; ξ̂, η̂) =
1

2π
log [(ξ − ξ̂)2 + (η − η̂)2]1/2. (2.7)

In equation (2.6), partial derivatives with respect to n are in the direction of the unit
normal out of region Ω1 and s > 0. The normal derivatives of the potential φ are
given by the kinematic condition,

∂φ1
j

∂n
=

2

3

(
ηj

dξj

ds
− ξj dηj

ds

)
, (2.8)

where j = a or b. Notice that equation (2.6) is singular along Ia. In a like manner, we
can obtain five additional integral equations similar to (2.6), one on each side of the
interface. We parallel the numerical method presented in Keller & Miksis (1983) for
the discretization of (2.5) and (2.6) (see also Keller et al. 2000).

3. Boundary conditions

Here we discuss in more detail the boundary conditions we will use for the
numerical solution of this problem. Note that since there are twelve unknowns in
this problem, we need twelve conditions at the triple junction plus four conditions
on each interface as |s| → ∞. Given these conditions plus the integral equations and
differential equations similar to (2.5) and (2.6) along each interface, we will discretize
the problem and determine all the unknowns by solving the resulting nonlinear
algebraic equations numerically.

First consider the limit as |s| → ∞ along each of the interfaces. Because of the
initial data we set the potentials, φ1

a, φ
1
b, φ

2
a, φ

2
c , φ

3
b, φ

3
c , all to zero (six conditions) as

|s| → ∞ and we force the interface to lie on a line (three conditions) at infinity, i.e.
on the interface Ij we set at infinity

ηj cos (αj)− ξj sin (αj) = 0, (3.1)
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where αj , j = a, b, is the initial wedge angle that interface Ij makes with the ξ-axis.
For interface Ic we set ηc = 0 at s = ∞. The final three conditions at infinity are given
by forcing the arclength condition at the last point with one-sided derivatives.

At the contact point we also need twelve conditions. Four of these are given
by forcing the interfaces to be in contact at this point, i.e. ξa(0) = ξb(0) = ξc(0)
and ηa(0) = ηb(0) = ηc(0) (here the superscripts refer to that variable on a specific
interface). Two additional conditions are given by the two Neumann conditions (as
in equation (2.3)). This leaves six conditions yet to be specified.

The final six conditions are found by forcing the velocity vector along the two
bounding interfaces of Ωi to be continuous at the triple junction. That is, we need
the velocity of the triple junction to be the same no matter how it is approached.
This implies that we need both the ξ- and η-components of the velocity vector along
the interface and at the triple junction to be continuous if we stay on the Ωi side of
the interfaces. Note that only the continuity of ∇φ needs to be considered here since
the velocity vector is proportional to it in the similarity plane. Now write the ξ- and
η-components of ∇φ on an interface in terms of the tangential (∂φ/∂s) and normal
(∂φ/∂n) derivatives of φ (drop the superscripts and subscripts for the moment):

∇φ = n
∂φ

∂n
+ t

∂φ

∂s

=

(
−dη

ds
,
dξ

ds

)
∂φ

∂n
+

(
dξ

ds
,
dη

ds

)
∂φ

∂s

=

(
−dη

ds

∂φ

∂n
+

dξ

ds

∂φ

∂s
,
dξ

ds

∂φ

∂n
+

dη

ds

∂φ

∂s

)
. (3.2)

Here n and t are the unit normal and tangent to the interface and the above notation
refers to the ξ- and η-components of velocity. The aim is to evaluate (3.2) at the triple
junction s = 0.

From the kinematic condition in similarity form, we also have the condition that

∂φ

∂n
=

2

3

(
−ξdη

ds
+ η

dξ

ds

)
. (3.3)

This relation can be used in equation (3.2) in place of the normal derivative of φ.
Now each component of the vector in equation (3.2) must be continuous at the triple

junction as it is approached along either of the interfaces bounding a given region.
For Ω1, this implies that the limits of ∇φ, given by (3.2), are equal as s approaches
the triple junction (s = 0) along Ia and Ib. Hence the jump in the ξ-component of
velocity is continuous if[

−dη

ds

2

3

(
−ξdη

ds
+ η

dξ

ds

)
+

dξ

ds

∂φ1

∂s

]a
b

= 0 (3.4)

at s = 0. And for the η-component of velocity we need[
dξ

ds

2

3

(
−ξdη

ds
+ η

dξ

ds

)
+

dη

ds

∂φ1

∂s

]a
b

= 0. (3.5)

Here the bracket notation is introduced to represent the jump from interface Ia to
interface Ib at the contact point. Note that (3.4) and (3.5) are evaluated on the Ω1

side of each of the interfaces.



Motion of a triple junction 391

Now at the triple junction the arclength condition must hold,(
dξ

ds

)2

+

(
dη

ds

)2

= 1. (3.6)

Using this in equation (3.4) along with the fact that there is contact at s = 0 gives,[{
−2

3

(
ξ

dξ

ds
+ η

dη

ds

)
+
∂φ1

∂s

}
dξ

ds

]a
b

= 0, (3.7)

while equation (3.5) gives[{
−2

3

(
ξ

dξ

ds
+ η

dη

ds

)
+
∂φ1

∂s

}
dη

ds

]a
b

= 0. (3.8)

Note that the system given in (3.7) and (3.8) can be rewritten as (with obvious
meaning)

A
dξa

ds
= B

dξb

ds
, A

dηa

ds
= B

dηb

ds
. (3.9)

Suppose we assume that the coefficients

A = −2

3

(
ξa

dξa

ds
+ ηa

dηa

ds

)
+
∂φ1

a

∂s
,

evaluated at s = 0 along interface Ia, and

B = −2

3

(
ξb

dξb

ds
+ ηb

dηb

ds

)
+
∂φ1

b

∂s
,

evaluated at s = 0 along the interface Ib, are both not zero. Now multiply the first
equations (3.9) by dηa/ds and the second of equations (3.9) by dξa/ds and subtract
the result. We find that for B 6= 0,

dξb

ds

dηa

ds
=

dξa

ds

dηb

ds
. (3.10)

Equation (3.10) states that at the triple junction, the normal from interface Ib is
perpendicular to the tangent from interface Ia. This can only happen if the interface
is smooth at the contact point, implying that a general triple junction is impossible.
Hence, the condition that A = B = 0 is required at a triple junction.

Therefore we must have on interface Ia and Ib at s = 0

∂φ1
j

∂s
=

2

3

(
ξj

dξj

ds
+ ηj

dηj

ds

)
, (3.11)

j = a, b. Note that within Ω1 the tangential derivative does not have to be continuous
at s = 0. But since the result only depends on which interface is being considered, a
similar derivation for the other regions implies that the tangential velocities on each
side of the same interface are equal at the triple junction. Hence conditions similar to
(3.11) hold along each interface, giving a total of six additional boundary conditions
at the triple junction.

All the necessary boundary conditions to solve for the interfaces plus the potentials
along them have now been determined. A solution of the resulting integro-differential
system can be obtained by discretizing the system as outlined in Keller & Miksis
(1983) for the case of a single wedge. As noted there, the convergence of the numerical



392 M. J. Miksis and J.-M. Vanden-Broeck

–3 –2

0

1 2 3

1

2

3

4

5

6

0

n

g

–1 4

90°

70°

40°

–1

Figure 2. Interface profiles for wedge angle αa = 90◦, 70◦, 40◦.
Here we set αb = 0◦, Σb = Σc = 1, β2 = β3 = 1.

method is very sensitive both to how the infinite integrals in the integral equation
are truncated and to the fact that surface waves appear on the interfaces with
a wavelength that decreases with the distance along the interface squared and an
amplitude that decreases with distance to the 7/2 power. A parallel analysis gives
the same small-amplitude decay rate and wavelength decrease with distance from the
triple junction. Hence many mesh points along the interface are needed to resolve
these decaying waves.

4. Results
To begin our numerical study of similarity solutions associated with this triple

junction problem, we set the density and surface tension ratios equal to one, i.e.
β2 = β3 = Σb = Σc = 1, and αb = 0, and solve the free boundary problem for various
values of αa. Note that by equating all of the surface tensions, equation (2.3) implies
that γ1 = γ2 = γ3 = 2π/3. What is not known is the location in the (ξ, η)-plane of
the triple junction plus its orientation. These are found by solving the free boundary
problem. The results, illustrated in figure 2, show that for αa = 90◦ the solution is
symmetric about the ξ-axis. No waves are observed along interface Ia but they are
obvious along Ib and Ic.

As the angle αa decreases from 90◦, we see that waves form along interface Ia,
with their amplitude increasing as αa decreases. Let (ξ0, η0) denote the location of
the triple junction. Then as αa decreases, ξ0 increases but η0 has a slight decrease.
Note that in the physical (x, y)-plane, the triple junction is moving with a velocity
proportional to t−1/3 (see equation (2.4)), in the direction of the vector ξ0i + η0j .
Hence during its initial reorientation, the triple junction has an infinite velocity but
then the speed decreases with time. Also note that with increasing distance from the
triple junction, the wavelength of the interfacial waves decreases. This is consistent
with the small-amplitude analysis noted in the previous section.

Now set αa = 50◦ and keep the other parameters the same as in figure 2. Suppose



Motion of a triple junction 393

–4 –3 –2

0

1 2 3 4

1

2

3

4

5

6

0

n

g

7

ªb=0.3 ªb=1.0

–1
–1

Figure 3. Wedge profiles for different surface tensions along interface Ib.
Here we set αa = 50◦, αb = 0◦, Σc = 1, β2 = β3 = 1.

now that the surface tension ratio is decreased from Σb = 1.0 to Σb = 0.3 while
keeping the other parameters constant. This situation is illustrated in figure 3. As
Σb decreases, observe the change in the amplitude of the waves along interface Ia
and Ic. In particular, it appears that the amplitude of the waves is less along the
interface Ia for smaller Σb. This is probably because the change in the location of
the triple junction from the origin, i.e. its initial position in the physical (x, y)-plane,
is less for the smaller surface tension case. Also note that the wavelength of the
interfacial waves along Ib appears smaller for smaller Σb. This is consistent with the
scaling introduced in equation (2.4) and with a small-amplitude analysis, as in Keller
& Miksis (1983), which shows that the surface waves should oscillate like the cube
of the similarity variable. In addition, from equations (2.3) we see that in the limit
Σb → 0, then γ1 = γ3 = π/2 and γ2 = π, i.e. the interfaces Ia and Ic appear to join
smoothly and the problem appears to reduce to the motion of a single wedge with
an initial wedge angle of 130◦. This limit can be observed in figure 3.
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